TRANSCRANIAL MAGNETIC STIMULATION IN REHABILITATION OF EXECUTIVE FUNCTIONS

Muñoz-Marrón, E. PhD.; Redolar Ripoll, D. PhD.; Robles, N. Ph.D.; Andreu Barrachina, Ll. PhD.; Boixadós Angles, M. PhD.

Cognitive Neuro-lab, Cognitive Neuroscience and Information Technology Research Program, IN3
Open University of Catalonia, Spain

Transcranial magnetic stimulation (TMS) has been applied as a therapeutic tool in clinical interventions since few years. Although first approaches were focused in rehabilitation of motor functions, nowadays some researchers and clinicians are interested in cognitive rehabilitation.

Research in executive functions and TMS are really scarce in normal subject as well as in clinical samples. This construct describe a group of cognitive abilities (reasoning, cognitive flexibility, behavior inhibition, planning, decision making, etc.) whose main function is the control and regulation of cognitive processes. The main brain area that underlies these functions is the dorsolateral prefrontal cortex (DLPFC).

Boroojerdi et al., (2001) have demonstrated with repetitive TMS (rTMS) the influence of left DLPFC in analogical reasoning; and the group of Moser in cognitive flexibility (Moser et al., 2002). In relation to behavior inhibition, assessed by go/no-go tasks, Bermpohl and his colleagues have shown that slow rTMS (≤1Hz) in left DLPFC improves the precision in performance but not the speed, meanwhile fast rTMS (>1Hz) in right DLPFC has a negative effect on performance (Bermpohl et al., 2006). Stroop tasks have also been assessed before rTMS in left DLPFC, and in some cases there were an improvement of performance (Vanderhasselt et al., 2006) but not in others (Wagner et al., 2006). Other groups have focused their interest on risk decision making, and results show that slow rTMS in right DLPFC makes the people take riskier decisions and accept unfair proposals (Knoch et al., 2006a; Knoch et al., 2006b; Van’t Wout et al., 2005).

References:


Key words: repetitive transcranial magnetic stimulation, right prefrontal cortex, executive functions, rehabilitation, cognitive neuroscience